Getting Started with Lumia AI

Learn how to set up and start using Lumia AI in your projects.

Step 1: Installation

Setting up Lumia AI in your project

Install the Lumia AI SDK using npm:

npm install @ai-sdk/Lumia

Or using yarn:

yarn add @ai-sdk/Lumia

Step 2: Configuration

Set up your environment and API key

Create a configuration file:

// config/Lumia.ts
import { LumiaConfig } from '@ai-sdk/Lumia';

export const config: LumiaConfig = {
  apiKey: process.env.Lumia_API_KEY,
  defaultModel: 'Lumia-V2-Pro',
  // Optional: Configure default parameters
  defaultParams: {
    temperature: 0.7,
    maxTokens: 1000
  }
};

Set up your environment variables:

Get your API key here

# .env.local
Lumia_API_KEY=your_api_key_here

Step 3: Basic Usage

Create your first AI interaction

Create a simple text generation example:

import { generateText } from '@ai-sdk/Lumia';

async function generateResponse() {
  try {
    const response = await generateText({
      prompt: 'Tell me about artificial intelligence',
      system: 'You are a helpful AI assistant.'
    });
    
    console.log(response.text);
  } catch (error) {
    console.error('Error:', error);
  }
}

Step 4: Project Structure

Organize your Lumia AI project

Recommended project structure:

your-project/
├── src/
│   ├── config/
│   │   └── Lumia.ts
│   ├── services/
│   │   └── ai.service.ts
│   └── components/
│       └── AI/
│           ├── TextGeneration.tsx
│           └── ChatInterface.tsx
├── .env.local
└── package.json

Example AI service:

// services/ai.service.ts
import { generateText, streamText } from '@ai-sdk/Lumia';
import { config } from '../config/Lumia';

export class AIService {
  static async generate(prompt: string) {
    return generateText({
      ...config,
      prompt
    });
  }

  static async stream(prompt: string, onChunk: (chunk: string) => void) {
    return streamText({
      ...config,
      prompt,
      onChunk: ({ chunk }) => {
        if (chunk.type === 'text-delta') {
          onChunk(chunk.text);
        }
      }
    });
  }
}

Next Steps

Continue your learning journey

Now that you have the basics set up, you can:

  • Explore different model configurations
  • Learn about text generation
  • Build chat interfaces
  • Implement streaming responses