Advanced Lumia AI Techniques
Master advanced features and optimize your Lumia AI implementations.
Custom Model Configuration
Fine-tune model behavior for specific use cases
Create custom model configurations:
import { LumiaConfig, ModelConfig } from '@ai-sdk/Lumia';
const creativeConfig: ModelConfig = {
temperature: 0.9,
topP: 0.95,
frequencyPenalty: 0.7,
presencePenalty: 0.7,
maxTokens: 2000
};
const technicalConfig: ModelConfig = {
temperature: 0.3,
topP: 0.8,
frequencyPenalty: 0.3,
presencePenalty: 0.3,
maxTokens: 1000
};
export const modelConfigs = {
creative: creativeConfig,
technical: technicalConfig
};
Performance Optimization
Optimize response times and resource usage
Implement caching and request batching:
import { generateText } from '@ai-sdk/Lumia';
import { LRUCache } from 'lru-cache';
const cache = new LRUCache({
max: 500, // Maximum number of items
ttl: 1000 * 60 * 60 // 1 hour TTL
});
async function generateWithCache(prompt: string) {
const cacheKey = JSON.stringify({ prompt });
if (cache.has(cacheKey)) {
return cache.get(cacheKey);
}
const response = await generateText({
prompt,
system: 'You are a helpful assistant.'
});
cache.set(cacheKey, response);
return response;
}
Implement request batching:
class RequestBatcher {
private queue: Array<{
prompt: string;
resolve: (value: any) => void;
reject: (error: any) => void;
}> = [];
private timeout: NodeJS.Timeout | null = null;
async add(prompt: string) {
return new Promise((resolve, reject) => {
this.queue.push({ prompt, resolve, reject });
this.scheduleBatch();
});
}
private scheduleBatch() {
if (!this.timeout) {
this.timeout = setTimeout(() => this.processBatch(), 50);
}
}
private async processBatch() {
const batch = this.queue;
this.queue = [];
this.timeout = null;
try {
const responses = await Promise.all(
batch.map(({ prompt }) =>
generateText({ prompt })
)
);
batch.forEach(({ resolve }, i) => resolve(responses[i]));
} catch (error) {
batch.forEach(({ reject }) => reject(error));
}
}
}
Error Handling and Retry Logic
Implement robust error handling and retry mechanisms
Advanced error handling with retries:
async function generateWithRetry(
prompt: string,
maxRetries = 3,
backoffMs = 1000
) {
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
return await generateText({
prompt,
system: 'You are a helpful assistant.'
});
} catch (error) {
if (
attempt === maxRetries ||
error.name === 'ValidationError' ||
error.name === 'AuthenticationError'
) {
throw error;
}
const delay = backoffMs * Math.pow(2, attempt - 1);
await new Promise(resolve => setTimeout(resolve, delay));
}
}
}
Monitoring and Logging
Track performance and debug issues
Implement comprehensive logging:
import { generateText } from '@ai-sdk/Lumia';
class AILogger {
static async trackGeneration(prompt: string) {
const startTime = Date.now();
try {
const response = await generateText({
prompt,
system: 'You are a helpful assistant.'
});
const duration = Date.now() - startTime;
console.log({
type: 'ai_generation',
status: 'success',
duration,
promptLength: prompt.length,
responseLength: response.text.length,
tokenUsage: response.usage,
timestamp: new Date().toISOString()
});
return response;
} catch (error) {
const duration = Date.now() - startTime;
console.error({
type: 'ai_generation',
status: 'error',
duration,
promptLength: prompt.length,
error: error.message,
errorType: error.name,
timestamp: new Date().toISOString()
});
throw error;
}
}
}
Next Steps
Continue exploring advanced features
Further areas to explore:
- Custom model fine-tuning
- Advanced prompt engineering
- Integration with other services
- Scaling and deployment strategies